3.321 \(\int \frac {\cosh ^2(c+d x)}{a+b \sinh ^2(c+d x)} \, dx\)

Optimal. Leaf size=50 \[ \frac {x}{b}-\frac {\sqrt {a-b} \tanh ^{-1}\left (\frac {\sqrt {a-b} \tanh (c+d x)}{\sqrt {a}}\right )}{\sqrt {a} b d} \]

[Out]

x/b-arctanh((a-b)^(1/2)*tanh(d*x+c)/a^(1/2))*(a-b)^(1/2)/b/d/a^(1/2)

________________________________________________________________________________________

Rubi [A]  time = 0.08, antiderivative size = 50, normalized size of antiderivative = 1.00, number of steps used = 4, number of rules used = 4, integrand size = 23, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.174, Rules used = {3191, 391, 206, 208} \[ \frac {x}{b}-\frac {\sqrt {a-b} \tanh ^{-1}\left (\frac {\sqrt {a-b} \tanh (c+d x)}{\sqrt {a}}\right )}{\sqrt {a} b d} \]

Antiderivative was successfully verified.

[In]

Int[Cosh[c + d*x]^2/(a + b*Sinh[c + d*x]^2),x]

[Out]

x/b - (Sqrt[a - b]*ArcTanh[(Sqrt[a - b]*Tanh[c + d*x])/Sqrt[a]])/(Sqrt[a]*b*d)

Rule 206

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1*ArcTanh[(Rt[-b, 2]*x)/Rt[a, 2]])/(Rt[a, 2]*Rt[-b, 2]), x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rule 208

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[-(a/b), 2]*ArcTanh[x/Rt[-(a/b), 2]])/a, x] /; FreeQ[{a,
b}, x] && NegQ[a/b]

Rule 391

Int[1/(((a_) + (b_.)*(x_)^(n_))*((c_) + (d_.)*(x_)^(n_))), x_Symbol] :> Dist[b/(b*c - a*d), Int[1/(a + b*x^n),
 x], x] - Dist[d/(b*c - a*d), Int[1/(c + d*x^n), x], x] /; FreeQ[{a, b, c, d, n}, x] && NeQ[b*c - a*d, 0]

Rule 3191

Int[cos[(e_.) + (f_.)*(x_)]^(m_)*((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]^2)^(p_.), x_Symbol] :> With[{ff = FreeF
actors[Tan[e + f*x], x]}, Dist[ff/f, Subst[Int[(a + (a + b)*ff^2*x^2)^p/(1 + ff^2*x^2)^(m/2 + p + 1), x], x, T
an[e + f*x]/ff], x]] /; FreeQ[{a, b, e, f}, x] && IntegerQ[m/2] && IntegerQ[p]

Rubi steps

\begin {align*} \int \frac {\cosh ^2(c+d x)}{a+b \sinh ^2(c+d x)} \, dx &=\frac {\operatorname {Subst}\left (\int \frac {1}{\left (1-x^2\right ) \left (a-(a-b) x^2\right )} \, dx,x,\tanh (c+d x)\right )}{d}\\ &=\frac {\operatorname {Subst}\left (\int \frac {1}{1-x^2} \, dx,x,\tanh (c+d x)\right )}{b d}-\frac {(a-b) \operatorname {Subst}\left (\int \frac {1}{a+(-a+b) x^2} \, dx,x,\tanh (c+d x)\right )}{b d}\\ &=\frac {x}{b}-\frac {\sqrt {a-b} \tanh ^{-1}\left (\frac {\sqrt {a-b} \tanh (c+d x)}{\sqrt {a}}\right )}{\sqrt {a} b d}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 0.09, size = 50, normalized size = 1.00 \[ \frac {-\frac {\sqrt {a-b} \tanh ^{-1}\left (\frac {\sqrt {a-b} \tanh (c+d x)}{\sqrt {a}}\right )}{\sqrt {a}}+c+d x}{b d} \]

Antiderivative was successfully verified.

[In]

Integrate[Cosh[c + d*x]^2/(a + b*Sinh[c + d*x]^2),x]

[Out]

(c + d*x - (Sqrt[a - b]*ArcTanh[(Sqrt[a - b]*Tanh[c + d*x])/Sqrt[a]])/Sqrt[a])/(b*d)

________________________________________________________________________________________

fricas [B]  time = 0.49, size = 443, normalized size = 8.86 \[ \left [\frac {2 \, d x + \sqrt {\frac {a - b}{a}} \log \left (\frac {b^{2} \cosh \left (d x + c\right )^{4} + 4 \, b^{2} \cosh \left (d x + c\right ) \sinh \left (d x + c\right )^{3} + b^{2} \sinh \left (d x + c\right )^{4} + 2 \, {\left (2 \, a b - b^{2}\right )} \cosh \left (d x + c\right )^{2} + 2 \, {\left (3 \, b^{2} \cosh \left (d x + c\right )^{2} + 2 \, a b - b^{2}\right )} \sinh \left (d x + c\right )^{2} + 8 \, a^{2} - 8 \, a b + b^{2} + 4 \, {\left (b^{2} \cosh \left (d x + c\right )^{3} + {\left (2 \, a b - b^{2}\right )} \cosh \left (d x + c\right )\right )} \sinh \left (d x + c\right ) + 4 \, {\left (a b \cosh \left (d x + c\right )^{2} + 2 \, a b \cosh \left (d x + c\right ) \sinh \left (d x + c\right ) + a b \sinh \left (d x + c\right )^{2} + 2 \, a^{2} - a b\right )} \sqrt {\frac {a - b}{a}}}{b \cosh \left (d x + c\right )^{4} + 4 \, b \cosh \left (d x + c\right ) \sinh \left (d x + c\right )^{3} + b \sinh \left (d x + c\right )^{4} + 2 \, {\left (2 \, a - b\right )} \cosh \left (d x + c\right )^{2} + 2 \, {\left (3 \, b \cosh \left (d x + c\right )^{2} + 2 \, a - b\right )} \sinh \left (d x + c\right )^{2} + 4 \, {\left (b \cosh \left (d x + c\right )^{3} + {\left (2 \, a - b\right )} \cosh \left (d x + c\right )\right )} \sinh \left (d x + c\right ) + b}\right )}{2 \, b d}, \frac {d x + \sqrt {-\frac {a - b}{a}} \arctan \left (-\frac {{\left (b \cosh \left (d x + c\right )^{2} + 2 \, b \cosh \left (d x + c\right ) \sinh \left (d x + c\right ) + b \sinh \left (d x + c\right )^{2} + 2 \, a - b\right )} \sqrt {-\frac {a - b}{a}}}{2 \, {\left (a - b\right )}}\right )}{b d}\right ] \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cosh(d*x+c)^2/(a+b*sinh(d*x+c)^2),x, algorithm="fricas")

[Out]

[1/2*(2*d*x + sqrt((a - b)/a)*log((b^2*cosh(d*x + c)^4 + 4*b^2*cosh(d*x + c)*sinh(d*x + c)^3 + b^2*sinh(d*x +
c)^4 + 2*(2*a*b - b^2)*cosh(d*x + c)^2 + 2*(3*b^2*cosh(d*x + c)^2 + 2*a*b - b^2)*sinh(d*x + c)^2 + 8*a^2 - 8*a
*b + b^2 + 4*(b^2*cosh(d*x + c)^3 + (2*a*b - b^2)*cosh(d*x + c))*sinh(d*x + c) + 4*(a*b*cosh(d*x + c)^2 + 2*a*
b*cosh(d*x + c)*sinh(d*x + c) + a*b*sinh(d*x + c)^2 + 2*a^2 - a*b)*sqrt((a - b)/a))/(b*cosh(d*x + c)^4 + 4*b*c
osh(d*x + c)*sinh(d*x + c)^3 + b*sinh(d*x + c)^4 + 2*(2*a - b)*cosh(d*x + c)^2 + 2*(3*b*cosh(d*x + c)^2 + 2*a
- b)*sinh(d*x + c)^2 + 4*(b*cosh(d*x + c)^3 + (2*a - b)*cosh(d*x + c))*sinh(d*x + c) + b)))/(b*d), (d*x + sqrt
(-(a - b)/a)*arctan(-1/2*(b*cosh(d*x + c)^2 + 2*b*cosh(d*x + c)*sinh(d*x + c) + b*sinh(d*x + c)^2 + 2*a - b)*s
qrt(-(a - b)/a)/(a - b)))/(b*d)]

________________________________________________________________________________________

giac [A]  time = 1.57, size = 68, normalized size = 1.36 \[ -\frac {\frac {{\left (a - b\right )} \arctan \left (\frac {b e^{\left (2 \, d x + 2 \, c\right )} + 2 \, a - b}{2 \, \sqrt {-a^{2} + a b}}\right )}{\sqrt {-a^{2} + a b} b} - \frac {d x + c}{b}}{d} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cosh(d*x+c)^2/(a+b*sinh(d*x+c)^2),x, algorithm="giac")

[Out]

-((a - b)*arctan(1/2*(b*e^(2*d*x + 2*c) + 2*a - b)/sqrt(-a^2 + a*b))/(sqrt(-a^2 + a*b)*b) - (d*x + c)/b)/d

________________________________________________________________________________________

maple [B]  time = 0.09, size = 577, normalized size = 11.54 \[ -\frac {\ln \left (\tanh \left (\frac {d x}{2}+\frac {c}{2}\right )-1\right )}{d b}+\frac {\ln \left (\tanh \left (\frac {d x}{2}+\frac {c}{2}\right )+1\right )}{d b}+\frac {a \arctan \left (\frac {a \tanh \left (\frac {d x}{2}+\frac {c}{2}\right )}{\sqrt {\left (2 \sqrt {-b \left (a -b \right )}-a +2 b \right ) a}}\right )}{d b \sqrt {\left (2 \sqrt {-b \left (a -b \right )}-a +2 b \right ) a}}+\frac {a \arctan \left (\frac {a \tanh \left (\frac {d x}{2}+\frac {c}{2}\right )}{\sqrt {\left (2 \sqrt {-b \left (a -b \right )}-a +2 b \right ) a}}\right )}{d \sqrt {-b \left (a -b \right )}\, \sqrt {\left (2 \sqrt {-b \left (a -b \right )}-a +2 b \right ) a}}-\frac {a \arctanh \left (\frac {a \tanh \left (\frac {d x}{2}+\frac {c}{2}\right )}{\sqrt {\left (2 \sqrt {-b \left (a -b \right )}+a -2 b \right ) a}}\right )}{d b \sqrt {\left (2 \sqrt {-b \left (a -b \right )}+a -2 b \right ) a}}+\frac {a \arctanh \left (\frac {a \tanh \left (\frac {d x}{2}+\frac {c}{2}\right )}{\sqrt {\left (2 \sqrt {-b \left (a -b \right )}+a -2 b \right ) a}}\right )}{d \sqrt {-b \left (a -b \right )}\, \sqrt {\left (2 \sqrt {-b \left (a -b \right )}+a -2 b \right ) a}}-\frac {\arctan \left (\frac {a \tanh \left (\frac {d x}{2}+\frac {c}{2}\right )}{\sqrt {\left (2 \sqrt {-b \left (a -b \right )}-a +2 b \right ) a}}\right )}{d \sqrt {\left (2 \sqrt {-b \left (a -b \right )}-a +2 b \right ) a}}-\frac {\arctan \left (\frac {a \tanh \left (\frac {d x}{2}+\frac {c}{2}\right )}{\sqrt {\left (2 \sqrt {-b \left (a -b \right )}-a +2 b \right ) a}}\right ) b}{d \sqrt {-b \left (a -b \right )}\, \sqrt {\left (2 \sqrt {-b \left (a -b \right )}-a +2 b \right ) a}}+\frac {\arctanh \left (\frac {a \tanh \left (\frac {d x}{2}+\frac {c}{2}\right )}{\sqrt {\left (2 \sqrt {-b \left (a -b \right )}+a -2 b \right ) a}}\right )}{d \sqrt {\left (2 \sqrt {-b \left (a -b \right )}+a -2 b \right ) a}}-\frac {\arctanh \left (\frac {a \tanh \left (\frac {d x}{2}+\frac {c}{2}\right )}{\sqrt {\left (2 \sqrt {-b \left (a -b \right )}+a -2 b \right ) a}}\right ) b}{d \sqrt {-b \left (a -b \right )}\, \sqrt {\left (2 \sqrt {-b \left (a -b \right )}+a -2 b \right ) a}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(cosh(d*x+c)^2/(a+b*sinh(d*x+c)^2),x)

[Out]

-1/d/b*ln(tanh(1/2*d*x+1/2*c)-1)+1/d/b*ln(tanh(1/2*d*x+1/2*c)+1)+1/d*a/b/((2*(-b*(a-b))^(1/2)-a+2*b)*a)^(1/2)*
arctan(a*tanh(1/2*d*x+1/2*c)/((2*(-b*(a-b))^(1/2)-a+2*b)*a)^(1/2))+1/d*a/(-b*(a-b))^(1/2)/((2*(-b*(a-b))^(1/2)
-a+2*b)*a)^(1/2)*arctan(a*tanh(1/2*d*x+1/2*c)/((2*(-b*(a-b))^(1/2)-a+2*b)*a)^(1/2))-1/d*a/b/((2*(-b*(a-b))^(1/
2)+a-2*b)*a)^(1/2)*arctanh(a*tanh(1/2*d*x+1/2*c)/((2*(-b*(a-b))^(1/2)+a-2*b)*a)^(1/2))+1/d*a/(-b*(a-b))^(1/2)/
((2*(-b*(a-b))^(1/2)+a-2*b)*a)^(1/2)*arctanh(a*tanh(1/2*d*x+1/2*c)/((2*(-b*(a-b))^(1/2)+a-2*b)*a)^(1/2))-1/d/(
(2*(-b*(a-b))^(1/2)-a+2*b)*a)^(1/2)*arctan(a*tanh(1/2*d*x+1/2*c)/((2*(-b*(a-b))^(1/2)-a+2*b)*a)^(1/2))-1/d/(-b
*(a-b))^(1/2)/((2*(-b*(a-b))^(1/2)-a+2*b)*a)^(1/2)*arctan(a*tanh(1/2*d*x+1/2*c)/((2*(-b*(a-b))^(1/2)-a+2*b)*a)
^(1/2))*b+1/d/((2*(-b*(a-b))^(1/2)+a-2*b)*a)^(1/2)*arctanh(a*tanh(1/2*d*x+1/2*c)/((2*(-b*(a-b))^(1/2)+a-2*b)*a
)^(1/2))-1/d/(-b*(a-b))^(1/2)/((2*(-b*(a-b))^(1/2)+a-2*b)*a)^(1/2)*arctanh(a*tanh(1/2*d*x+1/2*c)/((2*(-b*(a-b)
)^(1/2)+a-2*b)*a)^(1/2))*b

________________________________________________________________________________________

maxima [F(-2)]  time = 0.00, size = 0, normalized size = 0.00 \[ \text {Exception raised: ValueError} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cosh(d*x+c)^2/(a+b*sinh(d*x+c)^2),x, algorithm="maxima")

[Out]

Exception raised: ValueError >> Computation failed since Maxima requested additional constraints; using the 'a
ssume' command before evaluation *may* help (example of legal syntax is 'assume(b-a>0)', see `assume?` for mor
e details)Is b-a positive or negative?

________________________________________________________________________________________

mupad [B]  time = 0.48, size = 166, normalized size = 3.32 \[ \frac {x}{b}+\frac {\ln \left (\frac {4\,{\mathrm {e}}^{2\,c+2\,d\,x}\,\left (a-b\right )}{b^2}-\frac {2\,\sqrt {a-b}\,\left (b+2\,a\,{\mathrm {e}}^{2\,c+2\,d\,x}-b\,{\mathrm {e}}^{2\,c+2\,d\,x}\right )}{\sqrt {a}\,b^2}\right )\,\sqrt {a-b}}{2\,\sqrt {a}\,b\,d}-\frac {\ln \left (\frac {4\,{\mathrm {e}}^{2\,c+2\,d\,x}\,\left (a-b\right )}{b^2}+\frac {2\,\sqrt {a-b}\,\left (b+2\,a\,{\mathrm {e}}^{2\,c+2\,d\,x}-b\,{\mathrm {e}}^{2\,c+2\,d\,x}\right )}{\sqrt {a}\,b^2}\right )\,\sqrt {a-b}}{2\,\sqrt {a}\,b\,d} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(cosh(c + d*x)^2/(a + b*sinh(c + d*x)^2),x)

[Out]

x/b + (log((4*exp(2*c + 2*d*x)*(a - b))/b^2 - (2*(a - b)^(1/2)*(b + 2*a*exp(2*c + 2*d*x) - b*exp(2*c + 2*d*x))
)/(a^(1/2)*b^2))*(a - b)^(1/2))/(2*a^(1/2)*b*d) - (log((4*exp(2*c + 2*d*x)*(a - b))/b^2 + (2*(a - b)^(1/2)*(b
+ 2*a*exp(2*c + 2*d*x) - b*exp(2*c + 2*d*x)))/(a^(1/2)*b^2))*(a - b)^(1/2))/(2*a^(1/2)*b*d)

________________________________________________________________________________________

sympy [F(-1)]  time = 0.00, size = 0, normalized size = 0.00 \[ \text {Timed out} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cosh(d*x+c)**2/(a+b*sinh(d*x+c)**2),x)

[Out]

Timed out

________________________________________________________________________________________